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Lecture 30

Switched-Current   Integrators

Leapfrog filters



Current-Mode Two Integrator 

Loop

RARQ R

IOUT

IIN
C

RA

C R RL

• Straightforward implementation of the two-integrator loop

• Simple structure

CM Lossy Integrator CM Integrator CM Amplifier

Review from last time



Current-Mode Two Integrator Loop
RARQ R

IOUT

IIN
C

RA

C R RL

An Observation:

RARQ R

IOUT

IIN
C

RA

C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier !

VM Integrator VM Amplifier

VM Integrator VM Amplifier

VM Integrator

Review from last time



Switched-Current Filters
Basic idea introduced by Hughes and Bird at ISCAS 1989

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

( ) ( )OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios

Cp is parasitic gate capacitance on M2

Very low power dissipation

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades 

!

Potential to operate at very low voltages

Neither capacitor or resistor values needed to 

do filtering!

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations

Review from last time



s-domain to z-domain transformations

XIN XOUT( )T s

XIN XOUT( )H z

?

For a given T(s) would like to obtain a function H(z) or for a given H(z) would like 

to obtain a T(s) such that preserves the magnitude and phase response

( ) ( ) jωTs=jω z=e
T s H z=

Mathematically, would like to obtain the relationship:

Review from last time



s-domain to z-domain transformations

XIN XOUT( )T s

XIN XOUT( )H z

?

• Transformations of standard approximations in s-domain are the  

corresponding transformations in the z-domain

• Transformations are not unique

• Transformations cause warping of the imaginary axis and may  

cause change in basic shape 

• Transformations do not necessarily guarantee stability

• These transformations preserve order

1

2 z-1
 s=

T z
•

+

z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z
•

Three Popular Transformations

Review from last time



z-domain integrators

XIN XOUT( )T s

XIN XOUT( )H z

?

( )

1

0

0

0

TI
Forward Euler

z -1

I Tz
H z  = Backward Euler

z-1

TI z
Bilinear z

2 z-1







 + 

 
 

1

2 z-1
 s=

T z
•

+

z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z
•

Three Popular Transformations

( ) 0IT s  = 
s

Some z-domain integrators

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

OUT 0 IN OUT

OUT 0 IN OUT

0
OUT IN IN OUT

V nT+T TI V nT V nT Forward Euler

V nT+T I TV nT+T +V nT Backward Euler

TI
V nT+T V nT+T V nT +V nT Bilinear z

2

= +

=

= +

Corresponding difference equations:

Review from last time



z-domain lossy integrators

XIN XOUT( )T s

XIN XOUT( )H z

?

( ) ( )

1 1

0

0

0

TI G
Forward Euler

z -1+ T z -H

I Tz Gz
     Backward Euler

z 1+ T -1 zH - 1H z  = 

TI z z
G Bilinear z

T T2 z -H
z 1+ + -1

2 2





 










 
 + +  
               

     

( ) 0IT s  = 
s+

Some z-domain lossy integrators

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

OUT IN OUT

OUT IN OUT

OUT IN IN OUT

V nT+T GV nT HV nT Forward Euler

HV nT+T GV nT+T +V nT Backward Euler

V nT+T G V nT+T V nT +HV nT Bilinear z

= +

=

= +

Corresponding difference equations:

Functional 

Form

Review from last time



Switched-Current Integrator

Consider this circuit

T

nT (n+1)T

φ1

φ2

VDD

IIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

IIN1

1:

1:

:1

:B :A

• Clocks complimentary, nonoverlapping

• Phase not critical

Assume inputs change only during phase Φ2
(may be outputs from other like stages)



Switched-Current Integrator

( ) ( ) ( )1 3 iN2i t  = Bi nT-T  + i t

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2) 

( ) ( ) ( )1 3 iN2i nT-T  = Bi nT-T  + i nT-T

VDD

iIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

Since current does not change during this interval



Switched-Current Integrator

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT) 

( ) ( )2 1i t  = i nT-T

( ) ( ) ( )1 3 iN2i nT-T  = Bi nT-T  + i nT-T

( ) ( ) ( )2 3 IN1i t  = i t  + i t

( ) ( ) ( ) ( )OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
 

( ) ( )OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase)



Switched-Current Integrator

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT) 

( ) ( ) ( ) ( )OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

Evaluating at t=nT, we have

( ) ( ) ( ) ( )OUT IN1 OUT IN2

1 B
 i nT  + i nT = i nT-T  + i nT-T

A A

 
 
 

Taking z-transform, obtain

( ) ( ) ( )1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz− −

   
   
− −  



Switched-Current Integrator

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

( ) ( ) ( )1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz− −

   
   
− −  

( )

-1

-1

-1

-1

-1

Gz
Forward Euler

1 -Hz

G
H z  =      Backward Euler

1 - Hz

1 + z
G Bilinear z

1 -Hz







  
  

 

Recall lossy integrators:

If IIN1=0, becomes Forward Euler integrator

If IN2=0, becomes Backward Euler integrator

If IN1= - IIN2, becomes Bilinear Integrator

For H=1 becomes lossless



Switched-Current Integrator

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

( ) ( ) ( )1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz− −

   
   
− −  

• Summing inputs can be provided by summing currents on N1 or N2 or both

• Multiple outputs can be provided by adding outputs to upper mirror

• Amount of loss determined by mirror gain B



Switched-Current Integrator

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

( ) ( )11

-1

OUT IN2

Az
 I z   =  I z

Bz−

 
 
− 

( ) 0TI
H z  = 

z -1+ T

Sensitivity Analysis

Consider Forward Euler

0

A
I = 

T

1-B
 = 

T


0I

A = 1S B

-B
=

1-B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α is very large!



Switched-Current Integrator

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

Sensitivity Analysis

Consider Bilinear z

( )
0

2
I = A

T 1+B

2 1-B

T 1+B
 =

0I

A = 1S ( )( )B

-B
=

1-B 1+B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α is very large!

( ) ( )1

1

1

-1

OUT IN

z
 I z   = A  I z

Bz−

 +
 
− 

( )
10TI z

H z  = 
T T2

z 1+ + -1
2 2

 

 
 +
 

    
    
    

What about the sensitivity to the gain of the lower current mirror?



Switched-Current Integrator

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT) 

( ) ( )2 11i t  =  iA nT-T

( ) ( ) ( )1 3 iN2i nT-T  = Bi nT-T  + i nT-T

( ) ( ) ( )2 3 IN1i t  = i t  + i t

( ) ( ) ( ) ( )OUT IN1 OU
1

T 1 IN2

A B1
 i t  + i t = i n AT-T  + i nT-T

A A

 
 
 

( ) ( )OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase)

Sensitivity to A1?

Define A1 to be the gain of 

the lower mirror



Switched-Current Integrator
VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

( ) ( ) ( ) ( )OUT IN1 OUT IN2
1

1

B1
 i nT  + i nT = i nT-T  + i

A
A nT-T

A A

 
 
 

Taking z-transform, obtain

( ) ( ) ( )1 11 1

1

1

-1

OUT IN2 IN1

1

Az A
 I z   =  I z - I z

A

z zA AB B− −

   
   
− −   

1
B

1

A-B
=

1 A-B
S

Consider Forward Euler

11-B
 

A
= 

T


1

1
A

1

A-B
=

1 A-B
S

Sensitivity to A1?

Sensitivity to A1 is also large for low-loss or lossless integrator

Define A1 to be the gain of 

the lower mirror



Switched-Current Integrator

Consider another circuit

T

nT (n+1)T

φ1

φ2

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2) 

( ) ( ) ( )1 OUT iN

1
i t  = i nT-T  + i t

A

( ) ( ) ( )1 OUT iN

1
i nT-T  = i nT-T  + i nT-T

A
(1)

IIN IOUT
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :A

VDD

I1

φ1



Switched-Current Integrator

IIN IOUT
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :A

VDD

I1

φ1

T

nT (n+1)T

φ1

φ2

( ) ( )OUT 1i t  = Ai nT-T

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT) 

( ) ( )OUT 1i nT  = Ai nT-T (2)

combining (1) and (2), obtain

( ) ( ) ( )OUT OUT iN

1
i nT  =A  i nT-T  + Ai nT-T

A
•



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

( ) ( ) ( )OUT OUT iN

1
i nT  =A  i nT-T  + Ai nT-T

A
•

( ) ( ) ( )OUT OUT iNi nT  =i nT-T  + Ai nT-T

Taking z-transform, obtain

( ) ( )11

-1

OUT IN

Az
 I z   =  I z

z−

 
 
− 

Forward Euler Integrator

• Lossless Integrator (no matching required!)

• Matching of M1 and M2 not required

• Gain A does not affect coefficient of z-1 in the denominator

IIN IOUT
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :A

VDD

I1

φ1



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

IIN
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

φ1

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2) 

( ) ( ) ( )1 OUT iN

1
i t  = i nT-T  + i t

A

( ) ( ) ( )1 OUT iN

1
i nT-T  = i nT-T  + i nT-T

A
(1)



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

(2)

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT) 

( ) ( ) ( )OUT 1 OUT

B
i t  = A i nT-T i t

A

 
− 

 

( ) ( ) ( )OUT 1 OUT

B
i nT  = A i nT-T i nT

A

 
− 

 
combining (1) and (2), obtain

( ) ( ) ( ) ( )OUT OUT OUT INi nT  = i nT-T  - Bi nT  + Ai nT-T

IIN
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

φ1



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

( ) ( ) ( ) ( )OUT OUT OUT INi nT  = i nT-T  - Bi nT  + Ai nT-T

Taking z-transform, obtain

( ) ( )11

-1

OUT IN

Gz
 I z   =  I z

Hz−

 
 
− 

where
1

A
 G = 

B+ 1

1
 H = 

B+

• Lossy Integrator

• Matching of M1 and M2 not required

• Gain A does not affect coefficient of z-1 in the denominator

Forward Euler Integrator (Lossy)

IIN
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

φ1



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

( ) ( )11

-1

OUT IN

Gz
 I z   =  I z

Hz−

 
 
−  1

A
 G = 

B+ 1

1
 H = 

B+

Sensitivity Analysis

( ) 0TI
H z  = 

z -1+ T

B

T
=

1+B
S

1 B
= 

T B+1


 
 
 

For small loss, B is small and so is the sensitivity

It can be shown that 

IIN
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

φ1



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

Another structure

IIN

φ1

M1
M2

CP

φ2

M3

IB1
IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

( ) ( )11
OUT IN

-G
 I z   =  I z

Hz−

 
 
− 

Backward Euler Lossy Inverting

1

A
 G = 

B+ 1

1
 H = 

B+



Switched-Current Integrator

T

nT (n+1)T

φ1

φ2

Another structure

IIN

φ1

M1
M2

CP

φ2

M3

IB1 IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

( ) ( )
1

1

1

1
OUT IN

z
 I z   = -G  I z

Hz

−

−

 −
 
− 

1

A
 G = 

B+ 1

1
 H = 

B+



Switched-Current Filters

IIN

φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

• Switched-current filters is an entirely different approach to designing filters with

potential for overcoming many of the major problems facing the filter designer

• Other switched-current filter and integrator blocks have been proposed

• Integrators can be combined to form filter structures

• Single-ended and fully differential structures are readily formed

• Design of Switched-Current Filters is straightforward

• Beyond Hughes, a few others have looked at switched-current filters

• Hughes demonstrated experimentally modest performance with this technique

• Hughes was a world-class researcher and filter expert

• Hughes spent the better part of a decade trying to perfect the switched-current

approach but performance remained modest when he retired

• Limited use of switched-current filters today

• Idea is really unique and there are bound to be some major useful applications 

of the basic concepts embodies in the switched-current filters!

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2



Filter Design/Synthesis Approaches

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

( ) 1 2 mT s T T T= • •

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0
+

Cascaded Biquads

Leapfrog

Multiple-loop Feedback – One type shown 

Recall



Leapfrog Filters

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though

the real benefits and limitations of the structure are often not articulated 



Leapfrog Filters

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Observation:   This structure appears to be dramatically different 

than anything else ever reported and it is not intuitive why this 

structure would serve as a filter, much less, have some unique and 

very attractive properties

To understand how the structure arose, why it has attractive properties,

and to identify limitations, some mathematical background is necessary



Background Information for Leapfrog Filters

Theorem 1:  If the LC network delivers maximum power to the load at 

a frequency  ω, then

for any circuit element in the system except for x = RL 

( )
0

T jω

x
S =

RS

RLVIN VOUT

LC 

Network

This theorem will  be easy to prove after we prove the following theorem:

Assume the impedance RS is fixed



Background Information for Leapfrog Filters

Theorem 2:  If the LC network delivers maximum power to the load at a 

frequency  ω, then

where P(ω) is the power delivered to the load at input frequency ω and 

where x is  any circuit element in the system except for x = RL 

( )
0L

P ω

x
S =

RS

RLVIN VOUT

LC 

Network

Proof of Theorem 2:

First, we will define the input impedance Z11

Note:   There is no guarantee that there will be any frequencies where maximum power is transferred to 

the load and whether this does occur depends strongly on the LC circuit structure and the load RL.



Proof of Theorem 2:

RS

RLVIN VOUT

LC 

Network
'
1V

I'1

'
2V

I'2

1
11

1

V
Z

I

'

'
= (input impedance to the loaded LC Network)

11 1 1Z R jX= +

this can be expressed as

(R1 and X1 are real functions of ω and depend on RL)

Since the LC network is lossless (dissipates no power) we have

( )
L 1 1
P V I' '*Re= •

1 1 in
L in

S 1 1 S 1 1

R jX V
P V

R R jX R R jX
Re

* 
    +

= •    + + + +    
 

( ) ( )

2 21 1 1
L in in2 22 2

S 1 1 S 1 1

R jX R
P V V

R R X R R X
Re

 +
= = 

 + + + + 

1 1 2 2V I V I' ' ' '{ , , , }Define the port phasors as 



Proof of Theorem 2:

( )

2 1
L in 2 2

S 1 1

R
P V

R R X
=

+ +

To maximize power delivered to a fixed load at a frequency ω, must have

L

1

P
0

R


=



L

1

P
0

X


=



( )( ) ( )( )

( )( )

2 2
S 1 1 1 S 12L

in 2
2 21

S 1 1

R R X R 2 R RP
V

R
R R X

 
+ + − +  

=  
+ + 

 

( )

( )( )

( )( )
( )( )

2 2 22 2 2 2
S 1 1S 1 S S 1 1 S 12 2L

in in2 2
2 22 21

S 1 1 S 1 1

2 R R XR 2R R R X 2R R 2RP
V V

R
R R X R R X

   
− ++ + + − −    

= =   
+ + + +   

   

L

1

P
0

R


=


( )2 2 2

S 1 12 R R X 0− + =

( )

( )( )
2 1 1L

in 2
2 21

S 1 1

R 2XP
V

X
R R X

 
−  

=  
+ + 

 
L

1

P
0

X


=

 1X 0=

1X 0=

1 SR R=

(1)

(2)



Proof of Theorem 2:

( )

2 1
L in 2 2

S 1 1

R
P V

R R X
=

+ +

Now let x be any element in the LC network

L L 1 L 1

1 1

P P R P X

x R x X x

    
= +

    

L
P L
x

L

P x
S 0

x P


= =


1X 0= 1 SR R=(1) (2)

( )( )

( )( )
( )

( )( )

2 2 2

2 2S 1 1 1 1L 1 1

2 2in in2 22 2

S 1 1 S 1 1

2 R R X R 2XP R X
V V

x x xR R X R R X

      − + −        = +
        + + + +

      

It thus follows from (1) and (2) that at maximum power transfer, the two coefficients

in this expression vanish, thus

( )( ) ( )( )
2 2

L 1 1

2 2in in2 22 2

S 1 1 S 1 1

P R X0 0
V V 0

x x xR R X R R X

      
        = + =

        + + + +
      

thus



Question:   Can we also make the claim that                     at any frequency 

where maximum power is transferred to the load?

( )
0L

P ω

R
S

L

=

Yes!   Note that the previous analysis is based upon characterizing R1 and X 

which are functions of  k reactive components, {x1,… xk} and  RL. 

VOUT

VIN

R

R

L

C

The following circuit has maximum power transfer at dc and it  can be easily 

analytically shown that the sensitivity of P to L, C, and RL is 0 at dc.



Proof of Theorem 1: ( )T jω

x
S ?=

out
L out

L

V
P V

R

*

Re
  
 = •  
   

( )
( )in

L in
L

V T j
P V T j

R

*

Re



  
 = •  
   

( )
2

2in
L

L

V
P T j

R


 
 = •
 
 

Recall the following two sensitivity relationships

kf f
x x
S S=

2f f2
x x
S S•=

It thus follows that

( )
L

T jP
x x

2S S = •
L
P
xS 0= ( )T j

x
0S  =



Implications of Theorem 1

L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Many passive LC filters such as that shown below exist that have near

maximum power transfer in the passband

( )T jω

ω

If a component in the LC network changes a little, there is little change

in the passband gain characteristics (depicted as bandpass)

in passband( )T j

x
0S 



Implications of Theorem 1

Cascaded Biquad has a response that is the product of the individual

second-order transfer functions

If a component in a biquad changes a little, there is often a large  change

in the passband gain characteristics (depicted as bandpass)

( )T jω

ω

( )T jω

ω

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4



Implications of Theorem 1

If a component in a biquad changes a little, there is often a large  change

in the passband gain characteristics (depicted as bandpass)

( )T jω

ω

( )T jω

ω

( )T jω

ω

( )T jω

ω

( )T j

x
0S   in passband

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4



Implications of Theorem 1

L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Good doubly-terminated LC networks often much less sensitive to

most component values in the passband than are cascaded biquads !

This is a major advantage of the LC networks but can not be applied practically

in most integrated applications or even in pc-board based designs

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4



Example:  Determine at what frequencies maximum-power transfer

to the load will occur and what value of RL is needed for this to happen

Recall at maximum-power transfer, Z11 is real and equal to RS

L

11 2

L

R sL
Z

s LC sR C 1

+
=

+ +

( )
( ) ( )

2 2 3 2

L L

2 211 2 2 2 2 2 2

L L

R L R C L C
Z j j

1 LC R C 1 LC R C
ω

  

   

   − −
= +   
   − + − +   

L1RS

VIN RL

Z11

C1 VOUT

( )( )11
Z j 0Im ω = only at ω=0 and one other positive value of ω

To get maximum power transfer at ω=0, must have RL=RS

Appears not to have maximum power transfer at other frequency where  ( )( )11
Z j 0Im ω 



L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Consider again the doubly-terminated circuit that has multiple passband

frequencies where maximum power transfer to the load occurs

Observe that this structure is completely characterized by a set of

equations that characterize the network

All sensitivity properties are inherently determined by this set of 

equations

Any circuit that has the same set of equations will have the same 

sensitivity properties



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

For components in the LC Network observe

k

k

1
Y

sL
= k

k

1
Z

sC
=



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

( )1 0 2 1I V V Y= −

( )2 1 3 2V I I Z= −

( )3 2 4 3I V V Y= −

( )4 3 5 4V I I Z= −

( )6 5 7 6V I I Z= −

8 7 8V I Z=

( )5 4 6 5I V V Y= −

( )7 6 8 7I V V Y= −

Complete set of independent equations

that characterize this filter

All sensitivity properties of this 

circuit are inherently embedded in 

these equations!  

Solution of this set of equations is tedious



Stay Safe and Stay Healthy !



End of Lecture 30


